If it's not what You are looking for type in the equation solver your own equation and let us solve it.
A^2+3A-3=0
a = 1; b = 3; c = -3;
Δ = b2-4ac
Δ = 32-4·1·(-3)
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{21}}{2*1}=\frac{-3-\sqrt{21}}{2} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{21}}{2*1}=\frac{-3+\sqrt{21}}{2} $
| 2c+3=2c+3 | | 8x+48=10x-12 | | 15-2(3-2x)=46,x= | | (6.4-3.7)x=81 | | y=250^-3 | | 6-(4+x)=8x-2(3x+5)} | | 4n+7n=-11 | | (h-3)/3=2 | | (1=2a)^8 | | -14=m-12 | | -6k-3=39,k= | | 2(-6u+80)=4u+80 | | 6(x+5)=3x | | 2w^2+10w-132=0 | | 6=(2x-5)=2(5x+3) | | (2x+18)+(x+6)=42 | | 1/2(4x+4)-4=-3(x-5) | | b+$35.48=$60.00 | | 3(x-2)=9x | | 3x9+x=171 | | 2k=9k | | 1/8y-6=-19 | | 5*m=-20 | | 2y+y/8=68 | | 4b+14=22,b= | | 2(5y+8)=y+79 | | 9^x-2=89 | | 2x^2+6x=-66 | | 4x-5=-1+7x | | 2x+24=2x-18 | | -13w=13 | | 8x-2=4(3) |